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11 1 (5~7)., the translation a has a t part r2 = 3. 
Accordingly, (6.1) with g~ ---- (RI, 61 = 1, s = 0, r I = 9.) 
and g2 = (1, 1, a, z 2 = ~) gives 

z3 = ~'1 "1- 5"  (6.4) 

Since gl is of order 4, the possible r 1 values are 0, ¼ or 5 
1 1 and we have (rl, r3) = (0, 5), (5, 0) or (~,-~).  The first 

two are equivalent (superspace group 75.20.1), the last 
is 75.20.2. 

Adding the n mirror with e = - 1 ,  we note that it 
transforms gl and g3 into each other. By (6.3), this 
requires ~'3 = --'t'l' which rules out the (0,5) case, 
leaving only (¼,-¼): 85.20.3. Finally, a mirror plane 
parallel to the fourfold axes is added to obtain no. 125, 
for instance the diagonal m plane. From the spatial 
configuration (m lies between the axes) it follows that m 
transforms gl into g~l. According to (6.3) this gives z 3 
= - r~  = - r  1, which agrees with the former result 
independently of the r assigned to m. Hence, z can be 
either 0 (125.20.5) or 5 (125.20.6). Since the mirror b in 
P4/nbm is the product of m and ga, (6.1) yields z = + ¼ 
for b, so the complete pedigree becomes: 

space group P4 P4/n P4/nbm 

possible superspace groups W e4 
P4/n WP4/nbm " .. qWP4"--~W q - l ~ ' "  q]ql 

WP4/nbm 
q lqs 

Of course, different lines of ascendence are possible, 
such as P4 - P4bm - P4/nbm, to arrive at no. 125, 
which is in the most complicated arithmetic class of all; 
the derivation of the majority of superspace groups is 
simpler than in the above example. 
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Abstract 

A formula has been derived for the mean-square error 
in the phases of crystal reflections determined through 
the multiwavelength anomalous scattering method. The 
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error is written in terms of a simple function of the 
positions in the complex plane of the 'centres' corres- 
ponding to the different wavelengths. For the case of 
three centres, the mean-square error is inversely 
proportional to the area of the triangle formed by them. 
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The theoretical values are in good agreement with those 
obtained by earlier workers from computer simula- 
tions. The present method makes it easier to optimize 
the number and the actual wavelengths to be employed 
in the multiwavelength method. The maximum benefits 
of this method are expected in experiments employing 
synchrotron radiation or neutrons. 

Introduction 

Templeton, Phillips & Hodgson (1980) have recently 
studied the anomalous scattering of X-rays by caesium 
with synchrotron radiation (Fig. 1). They have pointed 
out that the unprecedentedly large anomalous factors 
near the L-absorption edges ( f '  = - 2 6 . 7  electrons, 
f "  = 16.1 electrons) could revive the multiwavelength 
method (Ramaseshan, 1966; Singh & Ramaseshan, 
1968) as a viable alternative to isomorphous replace- 
ment for solving the phase problem in maeromolecular 
crystallography. The multiwavelength method with 
synchrotron radiation has the following attractive 
features: 

(a) One can have as many 'derivatives' as necessary 
by just tuning to different wavelengths near the 
absorption edge of the anomalous scatterer. 
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Fig. 1. Anomalous scattering factors for caesium in caesium 
tartrate near the L~, L u and L m edges (from Templeton et al., 
1980). The contours represent combinations off '  a n d ! f "  at 
specific wavelengths. An optimal selection of wavelengths is 
shown by the four circled points. The points were selected by the 
methods described in this paper, assuming for simplicity that the 
source intensity and crystal absorption are the same at all 
wavelengths. Reflections hkl (top half of the diagram) and hkl 
(bottom half) must be measured with counting times in 
proportion to the given percentages. 

(b) There is perfect isomorphism since the same 
crystal is used at all wavelengths. 

(c) Owing to the large anomalous scattering factors, 
the differences between 'derivatives' are almost com- 
parable to those obtained in the isomorphous replace- 
ment method, as pointed out by Templeton et aL 
(1980). 

The above features coupled with the flexibility 
possible suggest that the multiwavelength method with 
synchrotron radiation is likely to become increasingly 
competitive with the isomorphous replacement tech- 
nique. The following questions will, however, have to be 
answered before the technique can actually be used 
effectively. (a) How many wavelengths should one use? 
(b) Which specific wavelengths should be selected? (c) 
How much experimental time should be allotted to each 
of the wavelengths? 

Phillips & Hodgson (1980) have made a start in 
answering the first two questions. With a computer 
simulation approach, they calculate the expected r.m.s. 
error in the phase determination for each promising set 
of wavelengths. They suggest that the best set can thus 
be selected. This method is quite time consuming. In 
this paper, we present an analytical theory from which 
we derive a simple formula for the r.m.s, phase error, 
expressed in terms of the coordinates in the complex 
plane of the 'centres' corresponding to the different 
wavelengths. The present approach is simpler than that 
of Phillips & Hodgson and we believe it can be 
routinely used to answer the above questions. 

Theory 

In the following, we assume that the positions of the 
anomalous scatterers in the (protein) structure have 
already been obtained by means of one of the various 
well known methods (e.g. Kartha, 1975). We are 
concerned with the next stage, viz the determination of 
the phases of the reflections. These are obtained by the 
method of Blow & Crick (1959) or its many modifi- 
cations (Cullis, Muirhead, Perutz, Rossmann & North, 
1961; North, 1965; Matthews, 1966) from intensity 
measurements corresponding to a number of iso- 
morphous derivatives (or different wavelengths in the 
multiwavelength method). In this paper we consider the 
following scheme, which is very close to the one 
suggested and used by Cullis et al. (1961). We are 
given n 'centres' (such as P, A, B in Fig. 2) having 
measured structure-factor amplitudes F~ with r.m.s. 
errors* A v Circles of radii F l are drawn around each of 

* The r.m.s, errors corresponding to different centres would in 
general be different because of (a) different intensities of the 
radiation source, (b) different absorptions of the crystal and (c) 
different measuring times. Of these, (c) could be adjusted by the 
experimenter, as discussed later. 
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the centres. The phase of the reflection is then 
determined as follows: 

(a) Associate weights 1/A~ with the n centres 
and calculate their 'centre of mass'. From this point 
draw radius vectors in various directions. 

(b) In each direction, determine the intersections of 
the n circles with the radius vector and compute their 
weighted variance. 

(c) The radius vector having the minimum variance 
is selected to estimate the phase ~0 e of the reflection. 

To analyse the r.m.s, error between the estimated 
phase and the true phase, we make the following further 
simplifying assumptions:* 

(a) The centres cluster within an area whose linear 
dimensions are much smaller than the radii of the 
circles. In the language of Fig. 2, the triangle PAB is 
assumed to be much smaller than the three circles. 

(b) The r.m.s, phase error is small compared to 2re. 
(c) Because of the above two simplifications, the 

circles can be replaced by straight lines within the 
region of interest. 

The geometry of the problem is now described in 
Fig. 3. For convenience we have shown only three 
centres A, B, C. O' is the centre of mass of the centres. 
The dashed lines are the 'true' circles corresponding to 
the case when there are no errors in the radii - these 
lines intersect at the true origin O. The full lines in Fig. 
3 represent the circles when there are errors in the radii. 
We take coordinate axes with the y axis along O'O 
and the x axis perpendicular to it at O. 

The theory proceeds as follows :t  

* The next section suggests how the theory may be extended to 
more 'real' situations. 

* The details have been deposited with the British Library Lending 
Division as Supplementary Publication No. SUP 36025 (10 pp.). 
Copies may be obtained through The Executive Secretary, Inter- 
national Union of Crystallography, 5 Abbey Square, Chester CH 1 
2HU, England. 

B 

Fig. 2. Geometry of the method of phase determination. P, A, B are 
three centres corresponding to different wavelengths and (0p is the 
phase of the reflection corresponding to P. The circles have 
centres at P, A, B and have radii given by the corresponding F,. 

(a) The phase error is obtained for a particular set of 
errors in the F t . 

(b) It is statistically averaged assuming that the 
errors on different F t are uncorrelated and that their 
r.m.s, values are A t. 

(c) This result is circularly averaged for all values of 
the phase of the reflection. 

One then obtains the following expression for the 
mean-square error (in rad 2) in the phase determina- 
tion, where (X t, Yi) are the coordinates in the complex 
plane of the ith centre. 

((A~p)2)ea,¢ = D-'/: (1) 

[~-, 1 2][t__~ 1 ] 
D = - -  ( X I - X ' )  ~ ( Y i -  ~-)2 

__ l ( x , - 2 ) ( Y , - P )  (2) 
i =  i 

, = ,  (3) 

~ :  ~-~_~/~ 1 . (4) 
t=1 

If we associate 'masses' I/A~ with the centres, then 
D is the determinant of the moment-of-inertia tensor of 
the two-dimensional collection of n 'massy'  points. It is 
therefore invariant with respect to translations and 
rotations of the coordinate axes. Now, we can write the 
scattering factor F H of the anomalous scatterers alone 
in the form 

Fm(h,k,l) = Su(h,k,l) (fo + f~ +/fi ') ,  (5) 

Fig. 3. The simplified geometry of phase determination used in the 
development of the theory. The significance of the lines is 
described in the text. 
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where 8 ,  is structure dependent, f0 is the scattering 
factor per anomalous scatterer in the absence of 
anomalous scattering andf~ and f [ '  are the anomalous 
factors corresponding to the ith centre. It is then very 
convenient to make the following choice for X~ and Yt 
in (1)to (4). 

X~ = f ~ l Su(h,k, l)l (6) 

Y~=f~'lSH(h,k,l)l .  (7) 

It should be pointed out that 18,1 enters only as a 
scale factor in (Xi, Yl). Therefore, although it will 
determine the actual magnitude of ((A~0)2)ealc in (1), it 
is irrelevant for much of the later discussion where one 
is concerned with the relative accuracies achievable 
with different sets of centres. Another interesting 
feature of (1) to (4) is that the F t themselves have 
completely dropped out and it is only the ,4 t that are 
important. 

Expression (2) [with (6) and (7)] can be simplified in 
a few special cases: 

(a) When there are only three centres and their 
r.m.s, errors are equal, then 

4 18.14 
D - - - A  2 

3 A 4 ' (8)  

where ,4, the area of the triangle formed by the three 
points, is given by 

A =f'~ (f'2' --f'3') + f'2(f'3' --f'~') + f'3(f'l '  --f'2'). (9) 

Thus, for three centres, one can minimize errors in the 
phases by maximizing the area of the triangle formed 
by them. 

(b) When one employs m wavelengths and measures 
Friedel pairs at each (a total of 2m centres), then, for 
equal r.m.s, errors at the 2m centres, one has 

D -  A 4 ( f  { - - f ' )  f l  'z (10) 
l= l  

In particular, for two wavelengths and four centres, 

218,14 
D = A---- V -  ( f ' l  - f ' 2 )  2 ( f 7  2 + f'2' 5). (11) 

Verification and empirical extension of the theory 

We compare our theoretical results with the detailed 
results obtained by Phillips & Hodgson (1980; see also 
Phillips, 1978) with a computer simulation approach. 
They have considered a hypothetical protein with 
caesium atoms on which computer 'experiments' are 
carried out at specified wavelengths at the L edges of 
caesium. They have limited themselves to a basic set of 
twelve centres (Fig. 4 shows the values of f '  and f " ) .  

Out of these they have considered ten different 
experiments ranging from sets of three centres up to ten 
centres (Table 1). For each set, they have obtained the 
phase errors between the calculated and true values for 
1000 reflections. They have then listed the r.m.s, phase 
errors for each set as a function of tr, the r.m.s, error in 
the simulated measured intensities (assumed to be the 
same for all the centres), and N, the molecular weight of 
the simulated protein. For comparison purposes, we 
have normalized and consolidated the values of Phillips 
& Hodgson to a standard case corresponding to a = 
1% and N = 12 000. In doing this, we have considered 
only those of their results which have r.m.s, phase 
errors <10 ° since our theory is essentially valid only in 
the limit of small phase errors.* The normalized results 
of Phillips & Hodgson are listed in Table 1. 

According to our theory, for constant o and N, the 
r.m.s, phase errors should be proportional to D -1/4. We 
have calculated D for all the ten sets of centres with the 
simplified formulae (8)-(11) taking A/I S HI to be 0.912 
electrons. The close agreement between our calculated 
r.m.s phase errors and the 'experimental' results of 
Phillips & Hodgson (Table 1) verifies the essential 
correctness of our theory. The present calculations are, 
of course, much simpler to implement than the earlier 
computer simulation approach. 

* However, note the extension of the theory discussed later. 
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Fig. 4. Twelve centres selected by Phillips & Hodgson (1980) near 

the L m edge of caesium in caesium tartrate. The theory 
developed here is compared with the computer simulation results 
of Phillips & Hodgson on the above centres. 
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Table 1. R.m.s. phase errors in a hypothetical protein 
crystal for  various choices o f  centres 

Comparison of the values of Phillips & Hodgson (1980) with those 
calculated with the present theory. 

R.m.s. phase error (°) Relative 
experimental 

Phillips & Hodgson time for 
Combination of (1980) average of constant 
centres in Fig. 4 values ~< 10 ° D -~ phase error 

1, 2, 3 6.09 5.97 118.5 
1,2,3,4 5.20 5.17 118.5 
3,5,6 5.62 5.58 103.5 
3,4,5,6 4.65 4.75 100.0 
1,2,3,4,5,6 3.80 3-91 101.6 
2, 3, 5 5.38 5.56 102.8 
1,2,3,4,5,6,7,8 3.57 3.63 116.8 
1,2,3,4,5,6,9, 10 3.50 3.56 112.3 
1,2,3,4,5,6,7,8,9,10 3.29 3.26 117.8 
1,3, 11 10.7 10.47 364.4 

The theoretical results of the previous sections are 
valid in the limit of small phase errors and may be 
expected to become increasingly incorrect at larger 
errors. For instance, as D ~ 0, ((Ago)2)eale ~ m. On the 
other hand, phase being a circularly periodic quantity, 
the true mean-square phase error ((A(p)2)true ~ 7r2/3. 
However, it is reasonable to suppose that ((Ago)2)true 
and ((Atp)2)ca~c are approximately related by a simple 
monotonic relation. That there is such a relationship is 
shown by Fig. 5 which plots the r.m.s, phase errors, 
true (i.e. given by Phillips & Hodgson, 1980) versus 
calculated. The existence of a monotonic one-to-one 
relationship between ((Ago) 2)true and ((Ago) 2)tale greatly 
increases the usefulness of the present theory. Thus, 
even when the phase errors are large, ((Ago)2)cale can 
still be used to decide the best combination of centres 
(i.e. the optimum wavelengths). 

In some situations it might be important to be able to 
estimate ( (dgo)2) t ru  e itself. One then needs a quantitative 
relation between ((Ago)2)true and ((Ago)2)c~lc. We have 
fitted the points in Fig. 5 and obtained the following 
empirical equation: 

2 1/2 2 1/2 /(At~'~2\0.65111/1.30) ((Ago))true ((Ago))calc/[1 + 0.46 \ \z..a ~v/ /C81C j , 

(12) 

change the wavelength at will and thus select suitable 
combinations of the anomalous factors. The strategy 
par excellence would be to optimize simultaneously 
both the wavelengths and the experimental times 
allotted to the wavelengths. One should choose dif- 
ferent promising combinations of wavelengths and in 
each case optimize the relative times so as to maximize 
D. One can then select the best set of wavelengths. The 
optimization of the relative times allotted to the 
different wavelengths leads to equations which are, 
unfortunately, non-linear and which will have to be 
solved iteratively. However, very high convergence will 
not be required since the r.m.s, phase errors depend 
only o n  D -1/4 which will be nearly constant for quite 
large deviations of the relative times from the optimum 
values. 

A point worth remembering is that the wavelengths 
of neutrons or synchrotron radiation are so easily 
tuned that it is not necessary to limit oneself to Friedel 
pairs. Thus if one has decided to use four centres, then 
it may be worthwhile looking for four different 
wavelengths rather than for Friedel pairs at two 
wavelengths. For instance, with the data of Fig. 1 on 
caesium, we have determined the best combination of 
four centres under the assumption of constant source 
intensity and absorption at all wavelengths. We obtain 
the results shown in Fig. 1. The optimum relative times 
for the centres are 30, 12, 29 and 29% of the total 
available time. We note that there are no Friedel pairs 
at all. In the neutron case, for a single-term Breit- 
Wigner-type resonance (Taylor, 1972), the best 
strategy is to measure Friedel pairs at two symmetrical 
wavelengths as shown in Fig. 6. In this case, by 
symmetry, all the four centres should be given equal 
experimental times. 

The optimization of relative times for different 
wavelengths is somewhat tedious and probably not 

120 

"~ 80 

where all angles are measured in rad. The above 
((Zlgo))true -~- ((/1(/7))talc relation has the property that 2 1/2 2 1/2 

for small phase errors and asymptotically tends to the ~ 40 
value ~z/X/'3 for large errors. Equation (12) is frankly 
empirical but is nevertheless likely to be useful. 

Discussion of strategy for protein crystallography 

With the help of the theoretical results developed in this 
paper it is possible to design and plan protein 
crystallography experiments carefully. We are 
primarily concerned here with experiments with syn- 
chrotron X-radiation or neutrons, where one is able to 

40 80 120 160 200 

Calculated RMS phase error (degrees) 

Fig. 5. True r.m.s, phase errors as obtained by Phillips & Hodgson 
(1980) plotted against the values calculated by means of the 
present theory. The points show strong evidence for the existence 
of a monotonic one-to-one relation between the two quantities. 
The solid line represents the empirical relation described by 
equation (12). 
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necessary for many experiments since the potential 
gains are not very great. However, if one decides to 
give equal times (or equal counts) to all the centres, the 
choice of the optimum set of centres is a very simple 
matter since the quantity D (equation 2) which is to be 
maximized can be easily calculated. We strongly feel 
that this minimum amount of optimization should 
always be carried out before using the multiwavelength 
method. 

Regarding the question of how many centres to 
select, the answer obviously varies from case to case. 
However, our experience with the data of Fig. 1 
suggests that three or four centres give the best 
accuracy of phase determination for a given total 
experimental time. This is substantiated by Table 1 
where we have listed the relative experimental times 
needed with the various sets of centres in order to 

25"1 5"1. 

25"/ 5'/. 

Fig. 6. Neutron anomalous scattering factors near resonance of a 
nucleus describable by a single-term Breit-Wigner theory. The 
two circles represent on the Argand diagram the values off0 +f '  
+ /f" at various neutron wavelengths. The present theory 
suggests that the optimal neutron wavelengths to be employed in 
the multiwavelength method are those corresponding to the four 
circled points. Identical measuring times are recommended for all 
the centres. 
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achieve the same r.m.s, phase error. Incidentally, these 
numbers suggest that there could well be a 20% 
difference in efficiency between two sets of centres 
which may look equally good on simple inspection. On 
the question of the optimum number of centres, we 
should caution that all the results of this paper 
presuppose exact knowledge of the positions of the 
heavy atoms as well as the absence of other systematic 
errors. In 'real' situations, there is safety in redundant 
information, and it would probably be preferable to 
have a larger number of centres. 

6. Conclusion 

We have derived in this paper an expression for the 
r.m.s error in the phases of reflections estimated by the 
multiwavelength method. With this expression we have 
suggested means of optimizing such experiments. The 
computations involved are relatively straightforward. 
We believe that the optimization procedures suggested 
here can be advantageously used, especially in protein 
crystallography. 
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